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The failure of local isotropy to describe the experimentally obtained derivative 
moments in turbulent shear flows has previously been well-documented, but is briefly 
reviewed. The same data are then used to evaluate the hypothesis that the 
turbulence is locally axisymmetric. Locally axisymmetric turbulence is defined 
herein as turbulence which is locally invariant to rotations about a preferred axis. 

The derivative moment relatibns are derived from the general form of the two- 
point velocity correlation tensor near the origin for axisymmetric turbulence. These 
are used to derive relations for the rate of dissipation of kinetic energy, the mean- 
square vorticity, and the components of each. Almost all of the experimental 
derivative moment data are shown to be consistent with these equations, and thus 
with local axisymmetry. 

* 

1. Introduction 
1.1. The rate of dissipation 

The characterization and measurement of small-scale motions of turbulent flow have 
represented two of the most challengiqg problems of turbulence research over the 
past 40 years. One of the primary experimental concerns has been the determination 
of the mean-square gradients of the fluctuating velocity field which depend 
disproportionately on the small turbulence scales, These mean-square gradients in 
turn determine the rate of dissipation of turbulence kinetic energy and the mean- 
square vorticity. 

For a Newtonian fluid with kinematic viscosity, v, the rate of dissipation of 
turbulence kinetic energy per unit volume, E ,  is defined by 

where ei, is the strain-rate tensor. If U ,  represents the component of velocity in the 
xi direction, then e,, is defined as 

= 2v(e,,e,,), (1) 

(2) 
1 au au e --I A .  

t* - 2 (ax, + ax) 

Using this (1) can be expanded to yield t 

nn 
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From its definition as the curl of the velocity, the mean-square vorticity can be 
determined as 

where et5k is the alternating tensor. This can be expanded to yield 

Thus twelve separate derivative correlations must be determined before the 
dissipation can be obtained, while only nine are required for the mean-square 
vorticity. So imposing are these tasks that the former has never been accomplished 
by flow measurement, and the latter only recently and with great difficulty (see 
Balint & Wallace 1985; Balint, VukoslavBevid & Wallace 1987). 

1.2. Isotropic turbulence 

The theory of isotropic turbulence is based on the fact that all the statistical 
measures of the flow must be invariant to reflections and rotations about all axes. 
The consequences of isotropy were first explored by Taylor (1935), and have been 
reviewed in detail by Batchelor (1953), Monin & Yaglom (1975), and Hinze (1975). 
The implication of isotropy for the dissipation and mean-square vorticity are 
profound, and arise from the fact that all the derivative moments occurring in them 
are simply related. In particular, 

(7) 

au, au, au, au, 

the dissipation for isotropic turbulence reduces to 

E = 15v ((2y) 

and 

Using these, 

and the mean-square vorticity to 
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Flow 

Quasi-homogeneous 
shear flow 

Boundary layer 

Pipe 

Circular jet 

Round 
plume 

Plane jet (without 
external flow) 

Plane jet (with 
external flow) 

Mixing layer 
Two-dimensional 

cylinder wake 

Experimental details 

R, = 160 

R, !z 5 x  lo4 

R, = 5 x 104 

= 5 x 105 

= 9~ lo4 

R, = 105 

R, x 125 

R, = 990 

R, = 204 
R, = 300 

= 200 
Strong jet 

Weak jet 

R,  = 330 

y/S x 0.08 
x 0.32 

Near wall 
Half-radius 
Near wall 
Half-radius 
Near wall 
Half-radius 
T / X  = 0 

= 0.05 
= 0.1 

Centreline 
r/x = 0.05 

= 0.09 

= 0.05 
= 0.1 

Centreline 
Centreline 
Half-width 
Centreline 
Half-width 
Centreline 
Half-width 

y/x = 0 

R, = 2.7 x lo3 y/d = 0 
= 6  

R, = y/d = 0 
1.905 x 1 0 4  

K ,  K2 
1.30 1.30 

1.65 1.57 
1.72 1.59 
3.3 1.8 
1.0 0.83 
1.73 1.73 
1.40 1.12 
1.22 1.22 
1.27 1.27 
0.98 0.98 
1.25 1.25 
1.77 1.77 
2.2 - 
1.8 - 
1.6 - 
1.47 1.47 
1.59 1.59 
1.77 1.77 
1.32 1.32 
1.33 1.33 
2.0 2.0 
1.82 1.82 
2.0 2.0 
1.18 1.54 
1.18 1.33 

0.99 1.23 
1.15 1.25 
1.16 1.12 

1.74 - 

Reference 

Tavoularis & Corssin 

Verollet 1972 

Laufer 1954 

1981 

Lawn 1971 

Wygnanski & Fiedler 
1969 

Beuther 1980 

Gutmark & Wygnanski 
1976 

Antonia et al. 1982 
Everitt & Robins 1978 

Everitt & Robins 1978 

Champagne et al. 1976 
Fabris 1974 

Champagne 1978 

TABLE 1. Velocity derivative ratios K ,  and K ,  

Thus, for isotropic turbulence, only a single mean-square derivative need be obtained 
to completely determine both the mean-square vorticity and the energy dissipation 
rate. (It will be seen below that the similarity of these two expressions is not unique 
to isotropic turbulence.) 

1.3. Locally isotropic turbulence 
There % b e  few real turbulent flows in which the turbulence can be assumed to be 
isotropic. However, in high-Reynolds-number flows, the energy is mostly dissipated 
at the smallest scales of motion which do not receive energy directly from the mean 
flow, but through an energy transfer from large to small scales. Kolmogorov (1941) 
argued that this transfer process removes the directional information of the energy- 
containing eddies so that the small scales could be considered to be locally isotropic. 
For such locally isotropic flows, only the statistical properties of the smallest scales 
of motion would be expected to satisfy the isotropic relations. 

Since in very high-Reynolds-number flows the mean-square derivatives are largely 
determined by the smallest scales of motion, an important application of local 
isotropy has been to argue that the isotropic derivative relations given by (7)-(9) 
apply. Thus, in such flows, a single derivative measurement should be adequate to 
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Experimental details 
Flow 

Boundary layer R, = 5 x 104 91s x 0.08 
x 0.32 

Pipe R, = 5 x lo4 Near wall 
Half-radius 
Near wall 
Half-radius 
Across pipe 

R, = 5 x 10' 

R, = 9 x lo4 
R, = 1.0 x lo6 r / x  = 0 Circular jet 

= 0.05 
= 0.1 

Cent re 1 in e Plane jet (without R, = 204 
external flow) 

K,t K4t Reference 

0.76 0.8 Verollet 1972 
0.76 0.78 
0.40 0.40 Laufer 1954 
0.69 0.56 
0.93 0.93 
0.80 0.80 
1.0 - Lawn 1971 
1.2 1.2 Wygnanski & Fiedler 
0.83 0.83 1969 
0.32 0.32 
0.57 - Antonia et al. 1984 

t The cylindrical coordinate equivalent is used for pipe flows. 

TABLE 2. Velocity derivative ratios K, and K4 

determine the dissipation and mean-square vorticity. Other consequences of local 
isotropy include the equipartition of the dissipation between the three component 
kinetic energy equations, and the absence of a direct dissipation of the off-diagonal 
Reynolds stress components. These have been incorporated in most attempts to 
develop closure models for turbulence. 

There is considerable evidence that local isotropy is not an adequate description 
of the velocity derivative moments for a t  least the finite Reynolds numbers 
associated with many turbulent laboratory flows. Browne, Antonia & Shah (1987) 
review a large number of turbulence derivative moment measurements and show 
that few satisfy the isotropic conditions of (7)-(9). Tables 1 and 2 (which have been 
adapted from their paper) summarize many of the results prior to 1987 for the 
derivative ratios defined by 

For isotropic (or locally isotropic) turbulence, all of these ratios should be unity. 
Clearly they are not, indicating that local isotropy is not an adequate description of 
the derivative relations for most of these flows. 

In  addition to the evidence for the lack of local isotropy in the velocity derivative 
moments, there is also evidence that the temperature derivative moments do not 
satisfy the conditions for local isotropy in a variety of turbulent flows of a t  least 
moderately high Reynolds numbers. For a locally isotropic scalar field, all three 
mean-square derivatives should be equal. Thus the ratios defined by 

should both be equal to unity for turbulence which is locally isotropic. None of the 
experiments summarized in table 3 are consistent with the isotropic temperature 
derivative relations. 
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Experimental details 
Flow Mi Ma References 

Homogeneous R, = 160 

Boundary layer R, = 5730 ylb’ c 0.06 
x 0.12 
x 0.18 
x 0.24 

shear flow 

R,=2000 y + x 2 5  
x 50 
x 100 

Plane wake R, = 36 Centreline 

yIL x 1.4 

Plane jet R, % 160 Centreline 

yJL x 1 

yIL x 2 

1.18 1.18 Tavoularis & Corrsin 
1981 

1.28 1.68 Sreenivasan et al. 1977 
1.14 1.30 
1.18 1.38 
1.15 1.47 
2.7 4.0 Krishnamoorthy & 
2.0 2.0 Antonia 1987 
1.4 1.6 
1.9 1.7 Antonia & Browne 1986 
1.9 1.9 
3.1 2.3 
2.3 1.6 
2.0 - Antonia et al. 1986 

TABLE 3. Temperature derivative ratios M I  and Ma 

The purpose of this paper is to explore an alternative description of the turbulence ; 
namely, locally axisymmetric turbulence. Local axisymmetry (with the l-axis chosen 
as the axis of symmetry) will be seen to require that K ,  = K, and K3 = K4 for the 
velocity derivative ratios defined above with no restriction on their values. Thus, 
nearly all of the measurements listed in tables 1 and 2 satisfy to within experimental 
error at least these conditions for local axisymmetry . For the locally axisymmetric 
temperature field the analogous requirement is that M ,  = M , ,  again with no 
restrictions on the values. While not as convincing as tables 1 and 2 (perhaps because 
of the presumed axis of symmetry), the results of table 3 still indicate that local 
axisymmetry might be useful. After a review of the constraints placed on the 
turbulence derivatives by homogeneity and axisymmetry, the concept of local 
axisymmetry will be defined and shown to provide a useful description of the 
turbulent fields considered. 

2. Axisymmetric homogeneous turbulence 
2.1. Homogeneous turbulence 

One of the primary objectives of this paper is to examine the derivative statistics of 
fields which are homogeneous, but not isotropic. Therefore it is important to examine 
what homogeneity (in the absence of further assumptions) implies about the 
derivative moments. The fundamental assumption of homogeneous turbulence is 
that the statistics of the field are independent of the location of the origin in space. 
Thus, the second-order velocity correlation, QU, defined by 

Q&) = <Ut(X)U,(X+rD, (12) 

r = XI-x. (13) 

is a function only if the separation vector 

From the definition ( 12) and a simple translation of the spatial origin by - r it follows 
that, for homogeneous turbulence, 

&t,(r) = QjL-r). (14) 
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Homogeneity also has consequences for the velocity derivative moments. From 
the definitions it follows that 

where u; = ui(x’). By changing the order of differentiation it follows immediately 
that 

Thus, of the eighty-one possible second-order derivative moments, only forty-five are 
independent. 

If the incompressible continuity equation given by 

is multiplied by aul/axl,au2/ax2 or au,/ax, and averaged, (16) can be used to 
transform the mixed derivative moments so that the following relationships result : 

These can be summed to yield 

These relations were first derived by Taylor (1935). 

homogeneous, incompressible flows, 
Immediate consequences from substitution of (21) into (4) and (6) are that for 

< % W J  = 2<ei5ei5> (22) 

and that € =  v(kT). (23) 

Thus for homogeneous turbulent flows, only nine derivative moments are needed to 
determine the dissipation and the mean-square vorticity. It has been commonly 
assumed that (23) is valid only for isotropic turbulence, and i t  is often referred to as 
the ‘isotropic dissipation ’ (cf. Launder, Reece & Rodi 1975 ; Reynolds 1976 ; Taulbee 
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1988). Clearly, however, only the much less restrictive assumptions of homogeneity 
and incompressibility are required. (The equality of (1) and (23) can also be seen 
easily from the two forms of the incompressible kinetic energy equation, one using 
the mean-square strain rate and the other the mean-square deformation rate. For 
homogeneous flow, only the production terms remain to balance either form of the 
dissipation, thus they must be equal.) 

For isotropic turbulence, the three cross-derivative moments of (18)-(20) are equal 
as are the three derivatives on the right-hand side, so that the isotropic relations of 
(9) follow immediately. The first two of these isotropic relations will be seen to hold 
for axisymmetric turbulence as well. 

2.2. Axisymmetric turbulence 
A less restrictive hypothesis than isotropy is to assume only that all statistical 
measures have rotational symmetry about a given axis. This is the basic assumption 
behind the theory of axisymmetric homogeneous turbulence (hereafter referred to as 
simply axisymmetric turbulence) developed by Batchelor ( 1946) and Chandrasekhar 
(1950). For the evaluation of the dissipation and mean-square vorticity which is of 
primary concern here, only the relations between the derivative moments are of 
interest. Somewhat surprisingly, they do not appear to have been derived before 
now. They can, however, be readily deduced from a Taylor expansion of the two- 
point velocity correlation near r = 0 which is given by Chandrasekhar (1950) as 

Q t j  = 2(a,,-a,,+Po,)rtrj+[-(2a,,+Boo) + r Y (  -4ao,+2a,,-33P,,)+~1~(2B,, 

- P z z  -8a22))I 4j + Woo +r2(3P0z-2az2 + P z 2  P')I At Aj + 2rAAi rj + rg Aj) (2012, - P o , ) ,  
(24) 

where ;Z is a unit vector in the preferred direction and p = r-;Z/r. The six coefficients 
- a,,, a,,, a,,, Po,, Po, and PZz - are independent invariants. 

The two invariants a,, and Po, can be related to the components of the turbulence 
energy by 

and 

aoo = - $( u:) 

Po0 = ( u 3  - ( 4 )  

= (Ut) - ( U i ) .  (26) 

(25) 

These will not enter the derivative relations. 
If the preferred direction is chosen to be the 1-direction, then 12 = (1,0,0) and p = 

r l / r .  From (24) it is easy to see that for this orientation, the diagonal elements depend 
only on r f ,  ri and r i ;  i.e. 

Qii = -2 "00 - [ ~ ~ I J Z  + 201221 r: - 4a,,(ri + T i )  9 (27) 

QZ2 = - ~ ~ ~ o o + P o o ~ - ~ ~ ~ ~ z + ~ ~ z z + P o z + P z z l ~ ~ - ~ ~ ~ o z + P o z 1 ~ ~ - ~ ~ ~ ~ ~ - ~ ~ z z + ~ ~ o z 1 ~ i ~  
(28) 

Q33 = - P a 0 0  +Pod - [4a,, + 6azz + Po, + P z 2 1  r; - [4a0, - 2azz + 3POzl 4 - [2aoz + Po,] 6. 
(29) 

Note the similar forms of Q,, and Qa3 (with the roles of r,  and r3 reversed), consistent 
with the symmetry about the l-axis. 
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For the off-diagonal terms, the condition for homogeneity of (14) implies that only 

&12 = 2@0, +a221  rl r2, (30) 

&I3 2(aoz +am) ri ray (31) 

&23 = 2(aOZ +PO21 ‘2 ‘3. (32) 

The similarity of (30) and (31) is also a consequence of the symmetry about the 1- 
axis. 

2.3. Derivative relations for axisymmetric turbulence 
It is straightforward to derive equations for the derivative moments in terms of the 
invariants ao2, a,,, Po2 and Pza. Substitution of (24) into (15) yields the general 
relation 

+ ((8aOz -4a2, + 6/30,) a,, - ( 4 A  - 2/32, - 166122) 4, U 4, 
+ [( -6POZ + 4 a d  h, -2/h 4,4,14 4 
- (401~2 -2P02) [UL 81, +a,, 4,) + V4,4n + 4, LJI- (33) 

It can be shown from (33) that a consequence of axisymmetry is that all but fifteen 
of the forty-five independent derivative moments are zero. The non-zero moments 
include all of the mean-square moments which enter the mean-square strain rate and 
vorticity. If the l-direction is chosen as the axis of symmetry they are given by 

The cross-derivative moments can be derived immediately from these and the 
homogeneous constraints of (16) as 

(39) 
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The invariants can be eliminated from (34)-(40) to yield relations between the 
derivatives which must be satisfied in axisymmetric turbulence. The results are 

and 

Equat-ms (3, )-(40) can also be used to obtain alternative expressions for . 5 and 
(46). Note that (47) is the same as for isotropic turbulence. 

2.4. Determination of the invariants 
It is easy to see that a method for determining the axisymmetric invariants from 
directly measured quantities, other than from the complete correlation function 
itself, could be particularly useful. Since all of the derivative moments depend on 
only the four invariants - ao2, a22, Fo2 and PZ2 - it  is possible to uniquely determine 
the invariants in terms of a variety of quartets of derivative moments which are 
chosen to be independent. For example, if by some means ((au,/ax,)2), ((au,/as,)2), 
((au2/i3x,)2), and ( (au2/i3s3)2) were determined, then the four invariants could be 
calculated from 

i au, 

a 2 2  = f[((3)--((-)7] i au, 
4 2 ax, 

ao2 = 5( (GI) 

P o 2  = ;[((3)+((3)-;((3)], 
P 2 2  = ; [ (ey) + (el) - y  (@I) -5 ((371 

(49) 

This is, of course, only one of a number of possible combinations; it will be seen 
below, however, to be a particularly convenient one for the experimentalist. 
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2.5. The dissipation and mean-square vorticity 
The dissipation can be obtained by direct substitution of these relations into either 
(3) or (23). The result is 

The mean-square vorticity can be obtained from (6) (or more directly by noting its 
equality with twice the mean-square strain rate in (22)) as 

(wt wt> = 6Oa,, + 20a,, + 20/3,, + 4/3,,. (53) 

Thus both the dissipation and the mean-square vorticity can be obtained once the 
four invariants ao2, a,,, Po, and PZ2 have been determined. 

Of some interest (especially to  turbulence modellers) are the components of 
dissipation which enter the equations for the individual components of the kinetic 
energy and Reynolds stress equations. For homogeneous turbulence, this ' dis- 
sipation ' tensor, D,, is given by 

It is easy to  show that the off-diagonal terms are zero for axisymmetric turbulence 
(as for isotropic turbulence). The component in the preferred direction is given by 

€11  = 20a02+4a2, (55)  

while the two perpendicular components are given by 

= 20a0, + 80122 + lopo2 + 2/3,,. (56) 

The components of the mean-square vorticity can be similarly derived as 

and 

( w i )  = 20a,, - 12a2, + l6po, 

<u:) = 2Oao2 + 16a2, + 2Po2 + 2P2,. 

(Note that these two equations are incorrectly given by Chandrasekhar 1950.) 
The dissipation for axisymmetric turbulence can be expressed in terms of the 

velocity derivative moments, either by using (48)-(51) in (52) or by direct 
substitution of the derivative relations into the definition. For the choice of moments 
above, the result is 

An alternative form depending only on measurements in the 1- and 2-directions is 

It is straightforward to derive relations for the individual components of vorticity 
as well as for the component dissipations. The exact form of these equations will 
depend on the choice of the preferred direction and the particular derivative moment 
combinations utilized to  express the independent invariants. 
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3. Experimental evidence for local axisymmetry 
3.1. Testing for local axisymmetry 

The results of the preceding section suggest a number of tests to which experimental 
determinations of the derivative moments can be subjected to determine whether or 
not they satisfy the constraints of locally axisymmetric turbulence. It will not be 
possible to establish sufficiency since it is usually impossible to measure all of the 
velocity derivatives. (This is, of course, no different than the requirements for 
establishing local isotropy.) However, it  will be possible to show that a number of the 
necessary conditions for local axisymmetry given in (41)-(47) are satisfied. More 
importantly, it can easily be determined that a flow is not locally axisymmetric since 
only a single condition need be violated. It is obvious that if a flow is determined not 
to be locally axisymmetric, then it cannot be locally isotropic. Of equal importance 
to showing that the non-zero derivative moments satisfy the appropriate relations is 
to establish that the remaining derivative moments are zero as required. When this 
much larger number of moments is considered (many of which can be measured), it 
will be seen that a strong inferential case for local axisymmetry can be made. 

There are a number of experimental factors which complicate the determination 
of derivative moments in turbulent flows. One of the most important factors limiting 
derivative measurement is the spatial filtering arising from the finite length of the 
wires and from the finite separation of multiple wires. These have been analysed in 
detail by Wyngaard (1968) for velocity measurement (using single and x -wires) and 
by Hussein & George (1990) for velocity difference measurement using parallel wire 
probes. In  brief, these analyses show that all of the spatial dimensions of the probes 
must be on the order of or smaller than the Kolmogorov microscale. 

Another significant problem arises from the need to determine derivatives in the 
flow direction by applying Taylor’s frozen-field hypothesis to time derivative 
measurements. Primary among several problems is the contamination of the 
estimated derivative by the fluctuating convection velocity inherent in turbulent 
flows. Lumley (1965), Wyngaard & Clifford (1977), and George, Hussein & 
Woodward (1989) show that Taylor’s hypothesis can be applied to derivative 
measurements without corrections only when the turbulence intensity is low 
(typically less than 10%). 

Two experiments will be considered in detail below - the round-jet experiment of 
Hussein & George (1989) (see also Hussein 1988) and the plane-wake experiment of 
Browne et al. (1987). Both of these experiments (unlike many others) can be shown 
to have dealt adequately with the problems listed above. In  particular, the hot wires 
were sufficiently small to minimize the effects of spatial filtering, and the ‘effective’ 
turbulence intensity was low enough for the application of Taylor’s hypothesis. The 
turbulence intensity in the far wake is naturally less than a few percent ; however, for 
the round jet the minimum local intensity is greater than about 30 YO. Therefore the 
latter experiment utilized a whirling arm to superimpose a velocity on the probe to 
reduce the ‘effective’ intensity to less than lo%, and the contamination from the 
fluctuating convection velocity to less than a few percent. 

A major source of error in both of the experiments arises from the difficulty in 
determining precisely the ‘effective ’ separation between the wires. This distance is 
needed to determine the x2- and x,-derivatives, and is particularly difficult to 
estimate when multiple x -wires are used. It is, in fact, the measurements made with 
these probe configurations which show the greatest scatter and lack of repeatability, 
and also present the greatest difficulties when evaluating the plane-wake results. The 
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FIGURE 2 1.  Sketch of the A,I-probe for derivative measurement. 

r / x  

FIGURE 2. Mean-square derivative profiles for a round yet. 

jet experiment attempted to minimize these errors by using a special A,I-probe 
consisting of only three wires (see figure 1).  Originally it was hoped that the upper 
and lower pairs of wires could be treated as independent x -wires, thereby providing 
two spatially separated estimates of both the streamwise and cross-stream velocities. 
Unfortunately, as recently pointed out by M. Hallback, J. Groth and A. Johansson 
(private communication), the A ,  I-configuration cannot independently resolve the 
off-axis derivatives of the cross-stream velocities, so that the originally reported data 
for these derivatives were incorrect. It has been possible, however, to recover most 
of the information on the derivatives in question by using the original data for both 
the parallel and A,I-probes, and it is these revised data which will be discussed 
below. 

3.2. The turbulent round jet  
The jet derivative moment measurements were made 70 exit diameters downstream 
of a turbulent round jet using a moving hot-wire probe. The exit Reynolds number 
of the jet was 100000, and the value of R, at the measurement location was 
approximately 350. The mean centreline velocity a t  this location was 4.83 m/s and 
the probe velocity was 7.10 m/s. The derivatives with respect to the cross-stream 
directions were taken with the A,I-probe, and with parallel wires (1-component of 
velocity only). A description of the facility, the measuring techniques and the 
original measurements has been given by Hussein (1988) and Hussein & George 
(1989). The above-mentioned problem with the A,I-probe data was circumvented by 
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FIGURE 3. (u, b )  Cross-derivative correlation profiles for a round jet. 

recognizing that the net effect of differencing the two pairs of velocities was to 
produce the same velocity derivative that would have been generated by a single 
parallel wire operating at an angle to the z-direction, and with separation equal to 
twice the wire spacing. This is because when the cooling velocities for the individual 
wires are considered, the result of the subtraction is to remove the middle wire from 
consideration. If the flow is assumed to be locally homogeneous, the derivative 
measured by this probe is the average of the cross-stream derivatives of both the 
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- 

- 40 
0 '  0.05 0.10 0.15 

r /  x 

FIGURE 4. Profiles of invariants for a round jet. 

streamwise and cross-stream components of the velocity. Since the cross-stream 
derivative of the streamwise component was measured independently using parallel 
wires, the other component could be determined. While certainly not as desirable as 
the direct measurement originally intended, the results are a useful complement to  
the other derivative measurements which do not suffer from these difficulties, and 
without them no estimate of the invariants would have been possible. 

The measurements of mean-square derivatives which contribute to  the dissipation 
are summarized in figure 2. Also shown to facilitate comparison with the isotropic 
requirement is twice the value of ( (i3ul/i3xl)2). While the striking departure from 
isotropy of the ((au2/az,)2) and ((au,/ax2)2) moments may be questioned in view of 
their indirect determination, the non-isotropy of the remaining derivative moments 
is also clearly evident from the fact that different derivatives have different profiles, 
as well as from their failure to satisfy the isotropic relations (especially away from the 
jet centreline). All of the measured moments satisfy the axisymmetric relations of 
$2.3 to within the experimental errors which are estimated to be in the range of 
10-20 %. I n  particular, 

Figure 3 shows the profiles of the cross-correlation between the various derivative 
combinations available from the A,I-probe, all of which should be zero in locally 
axisymmetric turbulence. All of these cross-moments are seen to be less by about an 
order of magnitude than the moments shown in figure 2, the small residual values 
being consistent with the experimental errors and the expected slight departure from 
local homogeneity and local axisymmetry. 

Figure 4 shows the invariants calculated from the measured derivative moments 
using (48)-(51). Especially apparent is the predominance of the third and fourth 
invariants, /Io2 and /Iz2. This is attributable to  the relatively large values of 
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0 0.05 0.10 
r l x  

0.15 

FIGURE 5. Dissipation profile estimates for a round jet including the contribution from each 
component . 

( (au,/az,)z) and ( (au,/ax,)z) which do not affect the ao2 and a,, invariants. In view 
of the manner in which these derivatives were obtained, further confirmation of these 
results should be obtained before too much is inferred from them. 

Figure 5 shows the dissipation profile calculated from both the locally isotropic 
result of (10) and the locally axisymmetric result of (52) with the invariants obtained 
above. The isotropic result significantly underestimates the dissipation, a t  least 
relative to the locally axisymmetric estimate. It should be noted that the latter is 
significantly higher than the estimates obtained from the kinetic energy equation 
using the measured moments and ignoring the missing pressure-velocity correlations 
(Taulbee 1988). Whether the difference can be attributed entirely to  these missing 
correlations or is due to measurement errors remains a subject for further 
investigation. 

Figure 5 also shows the component dissipations from (55) and (56) together with 
one-third of the isotropic result. The large difference between el and the other two 
is almost entirely attributable to the large values of the two cross-stream 
derivatives determined from the A,I-probe. 

Profiles of the mean-square vorticity components can easily be computed from the 
same invariants using (57) and (58), and are shown in figure 6. I n  contra-distinction 
to the component dissipations, the streamwise component of the vorticity dominates 
the cross-stream component. 

3.3. The plane wake 

The plane-wake mean-square derivative results were obtained by Browne et al. 
(1987) in the far wake of a cylinder in a low-turbulence wind tunnel. The 
measurements were taken a t  z /d  = 420 using both parallel hot-wire and pairs of x - 
wire probes. In all, nine of the twelve derivative moments entering the dissipation 
were measured, the missing moments being the cross-moments. The Reynolds 
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FIQURE 6. Component vorticity profiles for a round jet. 
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FIGURE 7. Mean-square derivative profiles for a plane wake. 

number based on the mean flow of 6.7 m/s and the cylinder diameter of 2.67 cm was 
1170, and R, was approximately equal to 20 at the measuring location. Thus the 
experiment provides a low-Reynolds-number counterpart to the relatively high- 
Reynolds-number jet experiment discussed above. 

Figure 7 is adapted from figure 4 of their paper, and shows the profiles of the 
measured derivative moments as a function of the y /L ,  where L is the local velocity- 
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FIGURE 8. Dissipation profile estimates for a plane wake. 

deficit half-width. Note that 2<( i3~, /ax , )~)  has also been plotted. It is immediately 
apparent that, as for the jet, local isotropy is not an acceptable description of this 
flow. Most striking from the figure are that to within the experimental error 
(estimated at  15-20 %) 

as required for local axisymmetry. Also, in spite of the fact that the profile shapes are 
somewhat different, the locally axisymmetric requirements that 

are satisfied for at least the former to within the experimental error. The relatively 
larger discrepancies in these pairs may be due to the difficulties in accurately and 
consistently measuring and maintaining the distances between the spatially 
separated x -wires used to obtain them. Whether the differences in profile shapes for 
the latter pair of moments is real or simply due to the limitations of the measurement 
techniques might be a subject for further investigation. 

Figure 8 shows the dissipation calculated from the assumption of local 
axisymmetry using (59) and (60). Also shown is the isotropic estimate of (10) as well 
as the homogeneous estimate (23) which uses all nine measured moments. (Browne 
et al. (1987) give only the isotropic estimate and several others based on 
approximations to (4), the most extensive of which yields a profile quite close to the 
homogeneous result used here.) The agreement of the locally axisymmetric estimates 
with the locally homogeneous estimate is quite gratifying, especially since the former 
require far less experimental effort. Note that, like the jet results above, the 
isotropic estimate is substantially different from the others. 
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FIQURE 10. Dissipation profiles for a plane wake showing the contribution from each 

component. 

Figure 9 shows the average invariants calculated using (34)-(38) and the two 
indicated sets of derivatives. Unlike the jet, the first invariant, aO2, is still the largest 
but is no longer clearly dominant. Invariant estimates based on other derivative 
combinations show the same qualitative behaviour, but differ in detail for all but ao2. 

Figure 10 shows profiles of the dissipation and component dissipations calculated 
using the invariants of figure 9. The dissipation differs slightly from the axisymmetric 
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FIQURE 11. Component vorticity profiles for a plane wake. 

estimate of figure 8, reflecting the different derivative moments used, but the 
difference is still within the experimental error. A major surprise in view of the strong 
anisotropy of the derivative moments is that the component dissipations are nearly 
equal to each other. Whether the lack of such equipartition of dissipation in the jet 
is real or an artifact of the manner in which the data were processed should be a 
subject for further investigation. 

Figure 11 shows the profiles of the vorticity components computed from the 
invariants. Like the jet, the streamwise component, 4 is substantially larger than 
the cross-stream component, 3. This is in sharp contrast to the component 
dissipations and emphasizes the non-isotropy of this flow. 

3.4. Discussion 
Two experiments, on a high-Reynolds-number round jet and a low-Reynolds- 
number plane wake, have been examined in detail. Of the combined total of 21 
derivative moment measurements in the two flows, only the au,/ax, and the au2/ax, 
measurements in the wake fall outside the bounds of what can easily be attributed 
to experimental uncertainty. It is easy to show by writing out the derivative second- 
moment transport equations that there can be no direct production of these 
moments from the interaction with the mean shear unless at  least one of the cross- 
derivative moments does not satisfy the constraints of local axisymmetry (or local 
isotropy). It is well-known to turbulence modellers that such a direct production 
term must be included in the dissipation equation to successfully model turbulent 
shear flows (see Launder et al. 1975). Thus the slight departures from local 
axisymmetry which have been noted may be a necessary feature of turbulent shear 
flows. It would appear then that a strong case for the near local axisymmetry of 
turbulent shear flows can be made, especially when the much greater number of 
results summarized in tables 1-3 are considered. 
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Recently, Wallace and his co-workers (Balint et al. 1987; Balint, Wallace & 
Vukoslaveevid 1989) have presented measurements of the mean-square vorticity and 
vorticity spectra in a turbulent boundary layer using a specially constructed nine- 
wire vorticity probe. Outside the immediate vicinity of the wall, the moments and 
spectra for the two cross-stream vorticity components were virtually identical, yet 
were distinctly different from those of the streamwise vorticity component. Similar 
results for the vorticity component spectra have also been obtained for the plane 
wake by Antonia, Browne & Shah (1988). Thus, together with the measurements 
discussed above, there is strong evidence for local axisymmetry of the turbulent 
vorticity field. 

All of the flows considered have the common characteristic that the turbulence 
energy is primarily generated by the action of the Reynolds stresses on a single 
component of the turbulence. The velocity derivative data discussed herein are 
consistent with the assumption that it is this direction (the direction of the mean 
flow) which is the preferred local axis. While a different choice (for example, the 
principal axis of strain rate) might be warranted for the temperature derivatives of 
table 3, it does not seem appropriate for the velocity derivative data of most of the 
flows considered here, especially in view of the limited accuracy of the data itself. 
Why any of these choices should be appropriate can be a matter for debate (see 
below), but the success noted above may be simply a consequence of the fact that all 
of the flows considered are simple shear flows for which even the turbulence 
intensities are nearly axisymmetric. Alternatively, the exceptionally large values of 
several of the off-axis derivatives (if substantiated) might be giving a clue that it is 
the different character of the large-scale structures for these flows which is 
responsible for the local axisymmetry. This possibility is particularly tantalizing in 
view of the fact that the flows differ in which of the derivatives are favoured, and 
certainly in which coherent structures characterize them. 

4. Summary and conclusions 
In the preceding sections, a theory of locally axisymmetric turbulence has been 

developed and shown to be reasonably consistent with a large body of experimental 
data. The theory provides an alternative to the assumption of local isotropy, and also 
provides additional credibility to those measurements which fail to confirm it. 
Antonia, Anselmet & Chambers (1986) summarize their search for local isotropy in 
turbulent shear flows as follows : ' Isotropic relations between mean-square 
derivatives with respect to different spatial directions are satisfied by neither 
temperature nor velocity. To our knowledge, there is no firm indication that this 
departure from isotropy decreases with increasing Reynolds number '. The results of 
this paper would appear to strongly confirm the first statement, and at  least provide 

While there is considerable evidence for local axisymmetry in turbulent flows, a t  
least at laboratory Reynolds numbers, there can still be debate as to why and 
whether or not it will persist as the turbulence Reynolds number is increased. The 
conventional view of turbulence (Kolmogorov 1941) - that the turbulent fluctuations 
will tend to be more isotropic the smaller their scale - can be reconciled with the 
findings here if it is argued that it is only the larger scales which contribute the 
departures from isotropy. If so, then the anisotropy should disappear in the limit of 
very large Reynolds number. Browne et al. (1987), Sreenivasan, Antonia & Danh 
(1977), and Antonia, Browne & Chambers (1984) all cite evidence that it is in fact the 

-a basis for discussing the second. 



Locally axisymmetric turbulence 21 

disproportionate contributions to the low-wavenumber spectra of the lateral and 
spanwise derivative which is responsible for the anisotropy. While this observation 
is not inconsistent with the conventional view, there is still no convincing evidence 
for these flows that these anisotropic contributions vanish with Reynolds number, 
nor is there confirmation that the high-wavenumber spectra satisfy the isotropic 
spectral relations. In fact, the recent wind-tunnel spectral measurements reported by 
Karyakin, Praskovsky & Kuznetsov (1990) to values of R, exceeding 3000 show 
persistent anisotropy throughout the inertial and viscous subranges. Both the 
derivative and spectral measurements are consistent with local axisymmetry, 
however. 

George ( 1988) has suggested the alternative possibility that the small-scale 
motions remain closely linked to the large-scale coherent motions. If so, then 
anisotropy could be observed over the entire spectral range if the large-scale motions 
are anisotropic. Thus, if the coherent structures of the motions are nearly 
axisymmetric because of the strong directional character of the mean flow from 
which they arise, then local axisymmetry might characterize the entire range of 
turbulent scales. This line of argument could account for the observed anisotropy of 
temperature gradients at  very high Reynolds numbers, and also the recent results of 
Karyakin et al. cited above. 

This paper has only set forth the beginnings of a theory of locally axisymmetric 
turbulence. In particular, it has focused only on the second-order derivative 
moments and the quantities computed from them. It is straightforward to use the 
results of Batchelor (1946) and Chandrasekar (1950) to explore the consequences of 
local axisymmetry for other statistical quantities. Of particular interest will be the 
relations governing the higher-order derivatives, the third-order derivative moments, 
and the second- and third-order spectra since these enter the one- and two-point 
vorticity and dissipation balance equations. Experimental data for these quantities 
obtained over a range of Reynolds numbers will be essential to resolve the questions 
raised above about why local axisymmetry exists and what it implies about the 
nature of turbulence. 

In conclusion, even though local axisymmetry is not as simple as local isotropy for 
either the theoretician or the experimentalist, it is considerably less complex than the 
alternative of full anisotropy or even local homogeneity alone. Perhaps most 
importantly, it places the dissipation, mean-square vorticity, and their components 
within the reach of the experimentalist. 

This work was carried out primarily at  the Turbulence Research Laboratory of the 
University at Buffalo, SUNY, and formed a portion of the Ph.D. dissertation of 
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